Controlled Traffic Farming

Why and How

Tim Chamen, CTF Europe
The underlying problem!

Timeline from the 1930s to the present day

Predicted pressure at 0.5 m depth, bar
850 kg Horse
11.2-28
12.4-36
16.9-34
18.4-38
16.9 R 34
710/70 R 38
800/65R32
1050/50R32

2.5 t vehicle
6 fold increase
21 t vehicle

Predicted pressure at 0.5 m depth, bar

Timeline from the 1930s to the present day
Tracking is extensive every year

Plan view of a field

• Rake, disc x2, drill, roll, harvest
• 127% tracking
And it’s not just cultivated soils!
Wheels have a big impact!

- Same field one week later!
Spring barley seedbed – what’s underneath!
Definition of CTF

– a system that confines all tracks to least possible area of permanent traffic lanes

– CTF is NOT prescriptive about tillage
– CTF is NOT just about keeping tramlines in the same place
BENEFITS OF CTF
Consistently higher crop yields

% increase in yield by crop type under controlled compared with random traffic

Numbers in brackets denote number of research results from which data were taken.
Lower costs

• Cuts
 – fuel use by 35%

• Uses fertilizer more efficiently
 • 15% better N recovery

The more you run on it!
the more fuel and time you waste loosening it!
What does CTF deliver?

- Lower machinery costs
 - less power per unit width
 - shallower tillage
 - smaller tractors
 - less aggressive, lighter machines
 - maximum potential for no till
RTF compared with CTF

RTF

First trafficked soil

Comparison of ease of digging!

CTF

both fields in no-till for 3 years - neither deep loosened
Environmental benefits of CTF

• 4 x better water infiltration
 – less run-off and erosion
 • reduced pollution of water courses
 – more plant available water
Randomly trafficked soil after potatoes & heavy rain (Tasmania)
Non-trafficked soil after potatoes & heavy rain (Tasmania)

4 x infiltration rate
Environmental benefits of CTF

• Reduced nitrous oxide emissions
 – consequential loss of N

• Earthworm numbers increased due to less soil compaction and tillage
Summary of water benefits

- Drainage CTF + 100%
- Plant water CTF + 34%
- Infiltration CTF + 400%
How’s CTF implemented?

- Match track widths
- Match implement widths
 - measure, don’t believe what you are told!
- Check elevator lengths
- Invest in RTK correction signal

- PLAN AND TAKE YOUR TIME
CTF - how?

TwinTrac – tractors straddle harvester passes

Max 6 m wide implements
Implement width = Track 1 + Track 2

Sown tracks
Harvester
Tractor
Trailer
Grain auger
Chemical application
Cultivator/drill
Grain trailer
Cereals harvester
Tractor
Harvester
CTF - how?
TwinTrac in practice

Implement width = Harvester track width + Tractor track width
Andrew Manfield, UK
200 ha Hessleskew

- CTF a way of thinking
- 50% less fuel with CTF & No-till
 - 5 tractors down to 3.5
 - No no-till without CTF
 - still some cults
 - ploughing 2 gears up on CTF
- Potatoes fit into system
 - 1.93 and 3.86 m track gauges
CTF - how?

OutTrac – two track gauges

- Cereal harvesting
- Grain auger
- Trailer
- Chemical application
- Harvester e.g. 2.8 m
- Other vehicles e.g. 2 m
- Cultivator/drill
Matching implement widths
Matching auger length
Repeatable positioning needs RTK.
Proof of RTK accuracy and repeatable positioning

9 m auto-steer with 9.14 m cutting platform
Guidance investment calculator

This worksheet looks at investing in satellite guidance for CTF with RTK.

Guidance depreciation rate

<table>
<thead>
<tr>
<th>Crop</th>
<th>0.25</th>
<th>0.25</th>
<th>0.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beans</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Broad beans</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Field overlaps in yellow boxes can be changed

If an operation is not included, just reduce its area to 0.1ha and do not delete other data in that column.

Operation Details

<table>
<thead>
<tr>
<th>Operation Details</th>
<th>Units</th>
<th>Tillage</th>
<th>Other tillage</th>
<th>Spraying NTV</th>
<th>Dilling</th>
<th>Pelleting</th>
<th>Spraying in TL</th>
<th>Combining</th>
<th>Fertilising in TL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hectares covered</td>
<td>ha</td>
<td>300</td>
<td>0.1</td>
<td>200</td>
<td>400</td>
<td>300</td>
<td>400</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>Implant width</td>
<td>m</td>
<td>6</td>
<td>6</td>
<td>24</td>
<td>6</td>
<td>12</td>
<td>24</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>Operation speed</td>
<td>km/h</td>
<td>8</td>
<td>5</td>
<td>14</td>
<td>10</td>
<td>14</td>
<td>14</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>Labour productivity without Guidance</td>
<td>ha/h</td>
<td>3.74</td>
<td>2.93</td>
<td>28.36</td>
<td>4.64</td>
<td>12.42</td>
<td>23.30</td>
<td>2.03</td>
<td>33.48</td>
</tr>
<tr>
<td>Labour productivity with Guidance</td>
<td>ha/h</td>
<td>4.06</td>
<td>3.04</td>
<td>30.20</td>
<td>4.78</td>
<td>12.85</td>
<td>23.20</td>
<td>2.24</td>
<td>34.52</td>
</tr>
<tr>
<td>Equipment cost</td>
<td>£/ha</td>
<td>45</td>
<td>44</td>
<td>53</td>
<td>66</td>
<td>10</td>
<td>53</td>
<td>70</td>
<td>16</td>
</tr>
<tr>
<td>Fuel cost</td>
<td>£/litre</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
</tr>
</tbody>
</table>

Costs Without Guidance

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Cost (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 1</td>
<td>Complete RTK system</td>
<td>25000</td>
</tr>
</tbody>
</table>

Costs With Guidance

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Cost (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 20</td>
<td>Labour cost</td>
<td>26000</td>
</tr>
</tbody>
</table>
First considerations

- CTF mindset
- Decide your cropping **within a much reduced tillage scenario**
 - widespread deep tillage probably no longer needed
 - what will work, what will not in this new scenario?
 - what are the weak points?
 - straw management?
 - drill performance?
 - risk assessment (find others doing something similar?)
Giving it a try

- Test a system
 - in one or two fields
 - know where you’ve run and where you haven’t
Example of giving it a try
Machinery as found at Compton Beauchamp Estates

<table>
<thead>
<tr>
<th>Data</th>
<th>Tracked</th>
<th>Uncropped</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage</td>
<td>66.30%</td>
<td>3.31%</td>
</tr>
</tbody>
</table>

![Data Tracked Uncropped Percentage 66.30% 3.31%]

![<2 2-3 4-5 6-7 >7]
Compton Beauchamp – small changes
Machines auto-steered on 6, 12 and 36 m

<table>
<thead>
<tr>
<th>Data</th>
<th>Tracked</th>
<th>Uncropped</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage</td>
<td>37.57%</td>
<td>3.31%</td>
</tr>
</tbody>
</table>
- results in first season

0 post harvest

2 post harvest

3 post harvest
Effects of compaction on water infiltration - Cambs

10 mm. h\(^{-1}\) rainfall intensity
Equates to 10 litres min\(^{-1}\) 100 m\(^{-1}\)
CTF Europe membership

• Join the growing number who are:
 • Sharing ideas
 • Visiting other farms
 • Attending “in-house” workshops

• £98 one off fee

Sign up at: www.ctfeurope.eu